1) $0 = 4 \cdot r^{2} \cdot \pi$ $0 = 4 \cdot 6^{2} \cdot \pi$ $0 = 452.4 \text{ cm}^{2}$ $0 \approx 4.5 \text{ dm}^{2}$

2)

 $O = 4 \cdot r^{2} \cdot \pi$ $O = 2 \cdot 2.4^{2} \cdot \pi$ $O \approx 72.4 \text{ m}^{2}$

3)	
$r = \frac{d}{2}$	$O = 4 \cdot r^2 \cdot \pi$
$r = \frac{8}{2}$	$O = 4 \cdot 4^2 \cdot \pi$
r = 4 mm	$O = 201,1 \text{ mm}^2$
	$0 \approx 2 \text{ cm}^2$

4)

r

r r

	$0 \approx 5,3 \text{ m}^2$
= 6,5 dm	$O = 530,9 dm^2$
$=\frac{13}{2}$	$O = 4 \cdot 6,5^2 \cdot \pi$
$=\frac{d}{2}$	$O = 4 \cdot r^2 \cdot \pi$

5)

 $V = \frac{4 \cdot r^{3} \cdot \pi}{3}$ $V = \frac{4 \cdot 17^{3} \cdot \pi}{3}$ $V = 20579,5 \text{ cm}^{3}$ $V \approx 20,6 \text{ dm}^{3}$

6) $V = \frac{4 \cdot r^3 \cdot \pi}{3}$ $V = \frac{4 \cdot 0.5^3 \cdot \pi}{3}$ $V \approx 0,524 \text{ m}^3$

7)	
$O = 4 \cdot r^2 \cdot \pi$	$V = \frac{4 \cdot r^3 \cdot \pi}{3}$
$O = 4 \cdot 28^2 \cdot \pi$	$V = \frac{4 \cdot 28^3 \cdot \pi}{3}$
$O = 9852 \text{ mm}^2$	$V = 91952,3 \text{ mm}^3$
$0 \approx 98,5 \text{ cm}^2$	$V \approx 92 \text{ cm}^3$

	0 ≈ 2	$26,4\mathrm{dm}^2$ V	≈	$12,8{\rm dm}^3$
r = 14,5	0 = 2		=	$12770\mathrm{cm}^3$
$r = \frac{29}{2}$			=	$\frac{4\cdot 14,5^3\cdot \pi}{3}$
$r = \frac{d}{2}$	O = 4	$\mathbf{l} \cdot \mathbf{r}^2 \cdot \boldsymbol{\pi}$ V	=	$\frac{4\cdot r^3 \cdot \pi}{3}$

9)

8)

$r = \frac{d}{2}$	$O = 4 \cdot r^2 \cdot \pi$	0,
$r = \frac{2}{2}$	$O = 4 \cdot 1^2 \cdot \pi$	0,
r = 1 dm	$O = 12,6 \text{ dm}^2$	0,

$O_{\texttt{mit Verschnitt}}$	$= \frac{0.106}{100}$
$O_{mit Verschnitt}$	$=\frac{12,6\cdot106}{100}$
$O_{\rm mit \ Verschnitt}$	= 13,356 dm ²
O _{mit Verschnitt}	\approx 13,4 dm ²

10)

$$O = 4 \cdot r^{2} \cdot \pi / : (4 \cdot \pi)$$

$$\frac{O}{4 \cdot \pi} = r^{2} / \sqrt{2}$$

$$\sqrt{\frac{O}{4 \cdot \pi}} = r$$

 $r = \sqrt{\frac{0}{4 \cdot \pi}}$ $r = \sqrt{\frac{765}{4 \cdot \pi}}$ $r = \sqrt{\frac{765}{12,57}}$ $r = \sqrt{60,9}$ $r \approx 7,8 \text{ cm}$

11) $O = 4 \cdot r^{2} \cdot \pi / : (4 \cdot \pi)$ $\frac{O}{4 \cdot \pi} = r^{2} / \sqrt{2}$ $\sqrt{\frac{O}{4 \cdot \pi}} = r$	$r = \sqrt{\frac{0}{4 \cdot \pi}}$ $r = \sqrt{\frac{1}{4 \cdot \pi}}$ $r = \sqrt{\frac{1}{12,57}}$ $r = \sqrt{0,08}$ $r \approx 0,28 \text{ m}$	
12) $O = 4 \cdot r^{2} \cdot \pi / : (4 \cdot \pi)$ $\frac{O}{4 \cdot \pi} = r^{2} / \sqrt{2}$ $\sqrt{\frac{O}{4 \cdot \pi}} = r$	$r = \sqrt{\frac{0}{4 \cdot \pi}}$ $r = \sqrt{\frac{9160}{4 \cdot \pi}}$ $r = \sqrt{\frac{9160}{12,57}}$ $r = \sqrt{729}$ $r \approx 27 \text{ mm}$	$d = 2 \cdot r$ $d = 2 \cdot 27$ d = 54 mm
13) $O = 4 \cdot r^{2} \cdot \pi / : (4 \cdot \pi)$ $\frac{O}{4 \cdot \pi} = r^{2} / \sqrt{2}$ $\sqrt{\frac{O}{4 \cdot \pi}} = r$	$r = \sqrt{\frac{0}{4 \cdot \pi}}$ $r = \sqrt{\frac{0,785}{4 \cdot \pi}}$ $r = \sqrt{\frac{0,785}{12,57}}$ $r = \sqrt{0,062}$ $r \approx 0,25 \text{ m}$	$d = 2 \cdot r$ $d = 2 \cdot 0.25$ d = 0.5 m
14) $O = 4 \cdot r^{2} \cdot \pi / : (4 \cdot \pi)$ $\frac{O}{4 \cdot \pi} = r^{2} / \sqrt{2}$ $\sqrt{\frac{O}{4 \cdot \pi}} = r$	$r = \sqrt{\frac{0}{4 \cdot \pi}}$ $r = \sqrt{\frac{260}{4 \cdot \pi}}$ $r = \sqrt{\frac{260}{12,57}}$ $r = \sqrt{20,7}$ $r \approx 4,5 \text{ cm}$	$V = \frac{4 \cdot r^{3} \cdot \pi}{3}$ $V = \frac{4 \cdot 4 \cdot 5^{3} \cdot \pi}{3}$ $V \approx 381,7 \text{ m}^{3}$

15)		
$O = 4 \cdot r^2 \cdot \pi / : (4 \cdot \pi)$	$r = \sqrt{\frac{O}{4 \cdot \pi}}$	
$\frac{O}{4\cdot\pi} = r^2 \qquad / $	$r = \sqrt{\frac{14}{4\cdot\pi}}$	
$\sqrt{\frac{O}{4\cdot\pi}}$ = r	$r = \sqrt{\frac{14}{12,57}}$	
	$r = \sqrt{1,11}$	
	$r \approx 1,05 \ dm$	1
16)		
$O = 4 \cdot r^2 \cdot \pi / : (4 \cdot \pi)$	$r = \sqrt{\frac{O}{4 \cdot \pi}}$	$V = \frac{4 \cdot r^3 \cdot \pi}{3}$
$\frac{O}{4 \cdot \pi} = r^2 \qquad / \sqrt{-1}$	$r = \sqrt{\frac{154}{4 \cdot \pi}}$	$V = \frac{4 \cdot 3.5^3 \cdot \pi}{3}$
$\sqrt{\frac{O}{4\cdot\pi}}$ = r	$r = \sqrt{\frac{154}{12,57}}$	$V \approx 179,6 \text{ mm}^3$
	$r = \sqrt{12,25}$	
	r = 3,5 mm	

$$V = \frac{4 \cdot r^{3} \cdot \pi}{3} / \cdot 3 \qquad r = \sqrt[3]{\frac{3 \cdot V}{4 \cdot \pi}}$$

$$3 \cdot V = 4 \cdot r^{3} \cdot \pi / : (4 \cdot \pi) \qquad r = \sqrt[3]{\frac{3 \cdot 1437}{4 \cdot \pi}}$$

$$\frac{3 \cdot V}{4 \cdot \pi} = r^{3} / \sqrt[3]{} \qquad r = \sqrt[3]{\frac{4311}{12,57}}$$

$$\sqrt[3]{\frac{3 \cdot V}{4 \cdot \pi}} = r \qquad r \approx \sqrt[3]{343}$$

$$r = 7 \text{ cm}$$